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Dragonfly detects prey and takes OFF. 

Prey captured. 

Occlusion by intervening objects

Introduction: Moving Target Detection & Tracking

Prey is far away, weak visual signal

Prey disappears, loss of signal

Prey moving, loss of signal

Prey reappears  

Figure 1: Dragonflies detecting, tracking and
catching prey for food. The dragonfly first detects it
prey and then takes off. While following prey it
must anticipate prey’s trajectory (location) in time
and speed to align itself in the same direction.

Prey



Background
Detecting and tracking moving targets is a complex task.

1. Low Amplitude Signals - Poor Signal to Noise ratio
2. Loss of Signals - Cluttered environment/ background

Dragonflies capture prey with success rate of 97% even in the presences of distraction*.
• Evolved neural mechanism – STMD Neurons
• Evolved behavior – (tend to isolate the targets against the sky as compared to cluttered 

environment)

1. Small target motion-detector neurons (STMDs) display selectivity for small moving
objects/ targets.

2. Two higher-order functions that (appear to) support this behavior:
Ø Selective Attention : allows STMDs to respond to single target at a time.
Ø Facilitation : enhances response of an STMD to a continuously-moving target.

* Robot eyes will benefit from insect vision. University of Adelaide. Phys.org



What is Facilitation?

* Wiederman, Fabian, Dunbier, O’Carroll, eLIFE 6:e26478, 2017

Facilitation is a mechanism that increase the excitability of a neuron to a
continuously-moving target (stimulus)*.

Not a function of how long a neuron is excited by targets;
• Effect is pronounced when a targets moves along a continuous paths in the visual field

1. Mechanism to gain confidence in the target detection by exploiting the
constraint of continuity of target motion.

2. Gives a significant boost to the reliability of detection.



Nature of Facilitation 
An increase in excitability with exposure  to a 
moving target.

Facilitation is spatially local.

– appears near / in front of a target that has moved 
along a continuous path

– remainder of the receptive field: depressed
responsiveness

Facilitation is predicative in nature.

– appears to propagate in retinotopic space after 
stimulus ends.

Inter-hemispherical transfer of facilitation. 

– might be dedicated neuron that goes over the 
other side of the brain

Facilitation moves at a rate of 30-40 deg/sec in 
the visual field.Figure* 2: Panel ‘A’ depicts the baseline receptive field sensitivity of the neuron, and ‘B’ depicts the

change in sensitivity induced by the primer, when the probe stimuli immediate follow it. In ‘C’ and
‘D’, there is a pause between the end of primer motion and the imposition of the probe stimuli.

* Image courtesy: David O’Carroll (Lund University) and Steven Wiederman (University of Adelaide)
* Wiederman, Fabian, Dunbier, O’Carroll, eLIFE 6:e26478, 2017 



Anatomy and Physiology of STMD Systems:

Figure* 3: Horizontal section of the optic ganglia of the dragonfly Hemicordulia tau. This
image is for the right eye and depicts 1) optic ganglion (lamina), 2) medulla, and 3) lobula
complex, at left. The primary lobula, shown in pink, is where small-field STMDs receive their
inputs, whereas wide-field STMDs arborize in the medial lobula, the smaller tan structure
below the left part of the primary lobula.

Dragonfly Optic Lobes

PRIMARY LOBULA (pink): 

where small-field STMDs arborize / reside
• ~ 750 μm span ó 135° subtense in 

visual space 
• facilitatory signal here would have to 

propagate at ~ 170 to 220 μm/s 

MEDIAL LOBULA (light tan): 

where wide-field STMDs arborize
• ~ 180 μm span
• facilitatory signal here would have to 

propagate on the order of tens of 
μm/s

* Image courtesy of J. Fabian, B. el Jundi, S. Wiederman, and D. O’Carroll. 
* Release of this figure is embargoed pending publication by its authors.



Problem Statement

Questions

1. Locus of facilitation is induced by 
moving target.

2. Location
3. Biological substrate
4. Speed range. Electrical signals in 

neurons are too fast. 

Hypothesis

Supported by traveling wave phenomena 
Retinotopically-organized regions of the visual 
system
2D networks of cells that interact with STMDs
Calcium waves as a plausible candidate (slower 
wave propagation)



Mechanism for Facilitation

1. Network of Cells: 
• Facilitation can take place anywhere within the receptive field of many neurons
• Might be supported by a network of cells

2. Regenerative Mechanism:
• Active wave propagation requires a regenerative mechanism 
• Positive feedback

3. Propagation speed:
• Signal needs to have a propagation speed less than a mm/s
• Membrane potentials are far too fast (cm/s)



Glia Cells

• “Glia” is a Greek word, meaning “glue”.

• Glia was considered as glue of nervous system that holds
neurons together.

• They are non-electrically excitable, unlike neurons.

• They display excitation consisting of variation of Ca2+

concentration in cytosol, also know was Ca waves.

• Propagate intra- and intercellular calcium waves in
response to stimulation.

• Waves could be transmitted over tens of µm because of
regenerative mechanism that is present in astrocytes.

Image Source:  Wikipedia

Figure: An astrocytic cell from rat brain.

Figure: Astrocytes (green) in the context of 
neurons (red) in a mouse cortex.



Neurons
• A neuron, also known as a nerve cell, is an

electrically excitable cell.

• Neurons communicates with other cells via
specialized connections called synapse.

• Most neurons consist of three parts:
1. Cell body
2. Dendrites
3. Axon

• Many interneurons are local and do not have clearly
defined axons.

• Signaling process is partly electrical and partly
chemical.
• Membrane potential = Signal in cell
• Chemical synapses = Signal between cells

Image Source: Wikipedia

Figure: Diagram of neuron



Calcium Signaling 
Calcium Wave: Moving and localized increase in cytosolic Ca2+ in a periodic wave-like fashion.

1. Intracellular - restricted to one cell.
2. Intercellular - transmitted to neighboring cells.

Triggering of Ca2+ waves:
1. Complex event, involve series of reactions.

2. Release of neurotransmitters onto the cells leads to chain of reactions, which activates receptor
channels.

3. InP3 receptors responsible for Ca2+ release from the endoplasmic reticulum (ER).

4. Ryanodine receptors are responsible for releasing Ca2+ from internal stores.
5. Released Ca2+ then propagate throughout the cell by combination of diffusion and amplification

mechanism.

6. Lateral Ca2+ transport is by governed diffusion equation.



Models for Propagation 

1. Modeling diffusion in 1D
• Cellular process are thin-long 1D tubes
• Diffusion in axial direction

2. Lateral calcium transport by diffusion in a dendrite.

𝜕
𝜕𝑡

𝐶𝑎!" = 𝐷#$
𝜕
𝜕𝑥!

𝐶𝑎!" + 𝑗%$

where, 
• [Ca2+] - concentration of calcium ions
• &
&'
𝐶𝑎!" - local time rate of change in calcium ion concentration 

• DCa - Ca diffusion coefficient
• jca - influx of calcium ions in every compartment (from pumps and receptor channels)



Calcium Signaling Pathway

Image Source: Khan Academy

• Signaling molecule binds to GPCR, G protein 
activation.

• GPCR activates PLC β.
• PLC cleave PIP2 into IP3 and DAG.
• IP3 diffuses over to ER and binds with calcium ion 

channel 
• Ca2+ flow from inside of the ER to the cytosol.
• DAG activate PKC, influence the cellular response.
• Calcium buffers (binding proteins) reduce free Ca.

1. GPCR = G protein-coupled receptor
2. PLC = Phospholipase C 
3. PIP2 = Phosphatidylinositol 4, 5 bisphosphate
4. IP3 = 1, 4, 5-inositol trisphosphate
5. DAG = Diacylglycerol
6. ER = Endoplasmic Reticulum
7. PKC = Protein Kinase C



Trans-membrane Calcium transport model for Astrocytes

ARC channels = source of initial calcium entry
Pumps  = removing calcium from the cytosol.
Ca.CalB =  Ca2+ buffers  
Figure: ⇌ (in black color) represents reversible reactions and ⇌ (in
red color) represents flow of calcium in and out of Ca2+ stores. Dotted
lines and arrows represents influence of a given molecule/chemical
on a reaction; and a + sign represents a positive influence on that
reaction. InP3R indicates the InP3 receptor, and R, O, A and I2 are
different states for this receptor’s calcium channels; ARC represent
Arachidonate-regulated calcium channels.

Positive-feedback loop is terminated

Reduction of open probability of the InP3 receptor (loop gain 
less than unity)

InP3 & Ca (from ARC channels) activates InP3 receptors, 
Influx of more Calcium.

DAG promotes the production of AA, which open ARC 
channels (local to input)

2nd messenger catalyzes the production of InP3 and DAG

Neural input (glutamate) causes 2nd messenger release.



InP3 Receptor Kinetics

Figure: Sneyd-Dufour model for InP3 receptor kinetics. The states
in gray, I1 and S were found to have little participation in
receptor function under the conditions we simulated and are not
included in our models.

1. Complex and Non-linear System
2. Calcium influx through InP3 receptor channels:

𝑗()*+ = 𝑘#$ ∗ 𝑂𝑝𝑒𝑛()*+

where,
• 𝑘!" - calcium influx rate constant for open InP3 channels 
• 𝑂𝑝𝑒𝑛#$%& - probability of open states in InP3 channels.
• fO - relative dependence of open probability on O state.
• fA - relative dependence of open probability on A state.
• Φ - are state dependent rates

𝑂𝑝𝑒𝑛#$%& = 𝑓' ∗ 𝑂 + 𝑓( ∗ 𝐴 )

Sneyd and Dufour, 2002



Model of Calcium Pumps in Astrocytes

• Mechanism for Calcium transport through the membrane.
• Efflux of Calcium is given by combination of plasma membrane & SERCA pumps.

1. Plasma Membrane Pump : first order Hill’s equation
2. SERCA Pump : second order Hill’s equation

𝑗,-.,/ = 𝑘0, ∗
𝐶/

𝑘0,% + 𝐶
!

+ 𝑘!, ∗
𝐶/!

𝑘,% + 𝐶
!
!

where,
• 𝑘0,, 𝑘!,, 𝑘0,%, 𝑘!,% =  calcium 1st and 2nd-order pump constants
• 𝐶/ =  cytosolic calcium concentration
• 𝑗,-.,/ = calcium efflux due to pumps.

Breit and Queisser, 2018



Calcium Buffering
1. Uptake & release of free calcium in cytosol by Calcium binding proteins.
2. Simplified buffering model:

• Modeled (multiple possible) buffering reactions as a single reversible reaction.
• Control reaction rate as a parameter

Ca diffuses 
in the 

cytosol

Free Ca 
binds with 

CalB, & acts 
as Ca-
buffers 

Bound Ca 
released 
back into 
Cytosol

𝐶𝑎!" + 𝐶𝑎𝑙𝐵 ⇋ 𝐶𝑎. 𝐶𝑎𝑙𝐵

Figure: Flow chart for Calcium buffering. CalB (Calbindin) 
is the calcium binding protein. 

𝑗/!" = 𝑘%23 ∗ 𝐶/ ∗ 𝐶𝑎𝑙𝐵0 − 𝐶𝑎. 𝐶𝑎𝑙𝐵

𝑗/"! = 𝑘%"" ∗ 𝐶𝑎. 𝐶𝑎𝑙𝐵

𝑑𝐶/
𝑑𝑡 = 𝑗/"! − 𝑗/!"

𝑑 𝐶𝑎. 𝐶𝑎𝑙𝐵
𝑑𝑡 = 𝑗/!" − 𝑗/"!

where, 
𝑘#$%, 𝑘#$$ buffering rates and CalB0 = 40 µM
𝐶&, 𝐶𝑎. 𝐶𝑎𝑙𝐵 is cytosolic and bound calcium concentration.



ARC Channels 
1. Arachidonate-regulated Ca2+ (ARC) channels

depend on the receptor-mediated generation
of low levels of intracellular arachidonic acid.

2. Only responsible for initial local influx of
calcium.

3. Local to where cell receives glutamatergic
input.

𝑗45# = 𝑘$$∗ 𝐴𝐴

where,
• 𝑘"" = calcium influx rate for open ARC channels
• AA = concentration of arachidonic acid.

1. Influx of calcium per unit area of plasma
membrane.

2. Assumed to be constant, because the
difference in calcium concentration between
cytosolic and external calcium is nearly
constant.

𝑗67$8$97 = 𝑘68

where,
• 𝑘68 = calcium leakage rate

Leakage



Gap Junctions

1. Intercellular connection between cells.
2. Allows molecules, ions to directly pass through a regulated gate between 

cells.
3. We model exchange of InP3 through gap junctions.
4. Evidence for exchange of Calcium ions through gap junctions is very weak*.

• Gap junctions have very low permeability to Calcium ions.

𝑗+,- = 𝑟𝑖𝑛𝑝3 ∗ 𝐼𝑛𝑃3./ − 𝐼𝑛𝑃3.0

where, 
𝑟𝑖𝑛𝑝3 = rate constant for inp3 flow between cells
𝑗+,- = influx or efflux of InP3

* In personal communication with Dr. James Sneyd, University of Auckland 



Models for Calcium dynamics in Neurons

Trans-membrane calcium transport model for neurons 

Pumps  = removing calcium from cytosol.
Ca.CalB =  Ca2+ buffers  

Positive-feedback loop is terminated by 
nonlinear calcium pumps.

More calcium opens more RyR Channels

RyR channels leads to influx of more Ca from ER 
stores.

Influx of calcium opens RyR channels. 

Neural input induces calcium influx (NMDAR’s)*

Figure: ⇌ (in black color) represents reversible reactions and
⇌ (in red color) represents flow of calcium in and out of cell
(and ER) by external input and pumps (SERCA and plasma
membrane pumps). ‘+’ sign represents positive influence on
the reaction, dotted arrow represents influence of a given
molecule/chemical on the reaction. C2, O1, C1 and O2 are
different states for RyR receptor’s calcium channels.

* NMDARs are also glutamatergic receptors.



Model for Calcium Pumps in Neurons
Model for SERCA pumps is a 2nd order Hill equation (with ER calcium conc. in the denominator*)

𝑗/7:%$ = 𝑘,! ∗
𝐶/!

𝑘,%! + 𝐶/ ∗ 𝐶7

Model for Plasma membrane pump is a 1st order Hill’s equation.

𝑗
"#$!%$

= 𝑘, ∗
𝐶/

𝑘,%0 + 𝐶/
where,

1. kp2 and kpc2 = calcium 2nd-order pump constants
2. kp1 and kpc1 = calcium 1st-order pump constants
3. Cs = Cytosolic calcium concentration
4. Ce = local ER calcium concentration
5. 𝑗*+,-" = Calcium efflux due to SERCA pumps

* Breit and Queisser, 2018



Model for Ryanodine receptor (RyRs)
Assumption:  We are assuming there can be depletion of the ER calcium conc., So 
the driving force is reduced.
The calcium flux density through RyR channels in the ER membrane is given by:

𝑗5 = 𝑟#$ ∗ 𝑂𝑝𝑒𝑛5;5 ∗ 𝐶7 − 𝐶/
where, 

𝑟#$ = calcium influx density for open RyR channels
𝐶7 = Calcium conc. in ER
𝐶/ = Cytosolic calcium conc.
OpenRyR = open probability for open RyR channels.

Ca buffering and Leakage:
Model for Ca buffering and leakage is identical to what was introduced in astrocytes section.

Breit and Queisser, 2018



Cells and Networks

Morphological Structure

Our model cells are made up of 3 morphological subunits: 
1. cell body (single compartment)
2. straight dendrites (10 compartment)
3. branched dendrite (3 segments, 5 compartment each)

These subunits are composed of compartments, which can be 
regarded as defining discrete finite elements or a grid for our 
signal propagation model.

Fig: Single cell in our model

Fig: Four interconnected cell in our model 

Black Dot – Cell Body
Black Outline – Dendrites
Red Dot - Interconnections



Astrocyte Network Model

Fig: Network of 143 astrocytes interconnected together.

• Gap junction-mediated interconnection
• Each cell is multi-compartment model

• Randomness in:
• Placement of cells
• Orientation of cells 
• Position of cells



Network Modeling

• We only model astrocytes arranged in a 2D network and in individual dendrites.
• No network models of neurons.
• Our work on neurons is limited to dendritic propagation only.

Uncertainties in modeling Neural Networks:
1. Neural model is complicated by the fact that calcium entry typically causes

depolarization as well.
2. How to best model intracellular transmission (neuron to neuron)?
• Either by synapses or gap junctions?



Numerical Simulation
• Our model (dendrites and cell body) is discretized into compartments.
• Solved our model numerically using Mimetic Discretization Methods*.
• MOLE (Mimetic Operators Library Enhanced) library*.

1. Implements high-order mimetic operators to solve partial difference equations.
2. Provides discrete analogs of vector calculus operators: Gradient, Divergence, Laplacian and Curl.
3. Act on staggered grids (uniform and non-uniform).
4. Satisfy local and global conservation laws.

• MOLE library for spatial integration and simple quadrature for temporal integration.
• Robin boundary condition in MOLE:

1. Dirichlet Coefficient (a) = 0
2. Neumann Coefficient (b) = 1

• Dendrites are sealed at one end (flux = 0) and the flux out at the other end is set to match the 
flux into the cell body/ dendrite.

* Johnny Corbino and Jose E.Castillo (2020)



Numerical Simulation

𝑈)"0 = 𝐿 ∗ 𝑈) + 𝑆:% + 𝑆)8

𝜕
𝜕𝑡 𝐶𝑎

!" = 𝐷#$
𝜕
𝜕𝑥! 𝐶𝑎!" + 𝑗/'( − 𝑗/)*

where, 𝐿 is our mimetic Laplacian operator (matrix) and 𝑆,- and 𝑆$. are vectors that represent flux from source 
and sink components in our model. 



Experiments
Different types of test beds:

1. Single dendrite
2. Two dendrites connected through cell body
3. Two cells connected end-to-end through two dendrites
4. Network of complete cells interconnected to each other randomly

Characteristics Examined: 
1. Wave Regimes
2. Wave speed
3. Wave amplitude
4. Region of influence



Important Parameters & Physical Intuition

Parameters Definition Baseline Value
kd1f [Ca]-dependent production of InP3 5 μm.s-1

kaa Calcium influx rate for open ARC channels 6 μm2.s-1

fCa Fraction to reduce DCa due to intracellular crowding 0.3
fInP3 Fraction to reduce DInP3 due to intracellular crowding 0.7
kCa Calcium infux rate constant for open InP3R channels 600 μm.s-1

kcbf Rates for calcium buffering 0.7 μm-1.s-1

kcbb Rates for calcium buffering 10 s-1

ki2 Rate for inhibition of InP3 production by PKC 0.0943 μm-1



Results : Qualitative Analysis
Parameters Regeneration Damping Wave Speed Wave Amplitude Effect

kd1f Strong Positive Strong Negative Strong Positive Strong Positive Global

kaa Positive Indirect NO EFFECT Positive NO EFFECT Global
fCa Strong Negative Strong Positive Strong Negative Strong Negative Global

fInP3 Strong Negative Strong Positive Strong Positive Strong Positive Global

kCa Positive Strong Negative Strong Positive Strong Positive Global
kGI NO EFFECT NO EFFECT Positive Small Positive Local

rInP3 Small Positive NO EFFECT Small Positive NO EFFECT Local

kcbf Strong Negative Strong Positive Strong Negative Strong Negative Global
kcbb Strong Positive Strong Negative Positive Strong Positive Global

Ki2 Strong Negative Strong Positive Strong Negative Strong Negative Global

Table: Chart for model parameters and its effects on the Ca wave dynamics. Strong Positive means
that the quantity (like speed) becomes larger or the phenomenon becomes more pronounced when
the parameter increase. Strong Negative means that the quantity (like speed) becomes smaller or the
phenomenon diminishes as the parameter increase. NO EFFECT means that change in parameter
value have no effect on the wave. Small positive and Small negative means that increase in parameter
value will have small (less-strong) impact on the wave. Local and Global means whether the change in
parameter value locally will impact locally or globally.

Chart
for 
model 
parameters 
and 
its
effects 
on the
Ca
Wave
Dynamics. 



Different Regimes for Calcium waves

Parameters Regenerative Regime Damping Regime Abortive regime Baseline value

kd1f >= 5 4 < kd1f < 3 < 3 5
kaa > 4 4 < kaa < 2 < 2 6
fCa < = 0.3 0.3 < fCa < 0.5 > 0.5 0.3

fInP3 > 0.7 0.7 < finp3 > 0.5 < 0.5 0.7
kCa >  500 500 < kCa< 400 < 400 600
kcbf < 1 1 < kcbf < 4 > 4 0.7
kcbb > 5 5 < kcbb < 3 < 3 10

ki2 < 1 1 < ki2 < 5 > 5 0.0943

Table for range of parameter values for different wave behavior. Every parameter is varied separately
while keeping other parameters at their baseline value. All experiments were performed on a test bed
of two cells with two dendrites each.

Regenerative : Travel across network of cells by regenerating itself.
Damping : Damped as it propagates and tends to die out with distance.
Abortive : Not able to generate waves.



Calcium Wave in a Single Astrocyte & Neuron Dendrite



Different Ca wave Regimes

Regenerative Regime Damping  Regime



Abortive Regime



Quantitative Analysis: Astrocyte Model (Dendrites) 
kd1f V kaa V fCa V fInP3 V kCa V kGI V Ki2 V kcbf V kcbb V

8 37.7 9 33.8 1 29.8 1 38.4 1500 105.2 120 38.4 5 20.0 5 0 14 34.4

7 35.7 8 33.3 0.8 30.7 0.8 34.4 1200 95.2 100 37.7 3 24.6 3 15.8 10 33.3

6 33.3 6 33.3 0.6 31.7 0.7 33.3 900 83.3 80 37.0 1 29.8 1 2 6 30.7

4 21.2 4 32.2 0.3 33.3 0.5 28.1 600 33.3 45 33.3 0.5 32.2 0.7 33.3 3 27.0
2 0 2 31.2 0.2 32.7 0.3 19.2 400 - 20 22.4 .09 33.3 0.3 38.4 1 19.4
0 - 0 - 0 29.8 0 - 0 - 10 - 0 0 0 - 0 19.4

kd1f A kaa A fCa A fInP3 A kCa A kGI A Ki2 A kcbf A kcbb A

8 4 10 2.6 1 1 1 3.1 1500 15.4 120 3 5 0.9 5 0 14 2.9
7 3.2 8 2.6 0.8 1 0.8 2.6 1200 12.7 100 2.9 3 1.2 3 1 10 2.3
6 2.3 6 2.3 0.6 1.4 0.7 2.3 900 9.7 80 2.8 1 1.8 1 2 6 1.8
4 1 4 2.3 0.3 2.3 0.5 1.8 600 6.1 45 2.3 0.5 2 0.7 2.3 3 1.4
2 0 2 2.2 0.2 3.7 0.3 1.1 400 3.9 20 1.4 0.09 2.3 0.3 3.2 1 0.8
0 - 0 - 0 5.8 0 - 0 - 10 0 - 2.5 0 - 0 0.7

Table for Wave speed (V) and Wave Amplitude (A) with change in parameter value. All experiments are done on
a single dendrite, where every parameter was varied once (while others were kept constant at their baseline
value). Values in red color in every column are the baseline value for that parameter. “-“ represents no wave for
those set of parameter value. Units for A is uM and V is um/s .

Red – Baseline 
Yellow – Max
Blue - Min



Neuron Model (Dendrites)

fCa V rCa V kcbf V kcbb V

1 416.66 100 1.2e+03 10 - 100 454.54

0.8 384.61 50 1000 5 156.25 50 454.54

0.6 333.33 20 714.28 1 384.61 35 416.66

0.4 263.15 10 555.55 0.7 416.66 20 416.66

0.2 178.57 5 416.66 0.3 454.54 10 416.66

0 - 0 - 0 500 0 416.66

fCa A rCa A kcbf A kcbb A

1 3 100 5.2 10 - 100 3.2

0.8 3 50 4.8 5 1 50 3.2

0.6 3 20 4.2 1 2.8 35 3

0.4 3 10 3.8 0.7 3 20 3

0.2 3 5 3 0.3 3.5 10 3

0 - 0 - 0 3.9 0 3

Table for Wave speed (V) and Wave amplitude (A) with change in parameter value . All experiments are done on a
single dendrite, where every parameter was varied once (while others were kept constant at their baseline value).
Values in red color in every column are the baseline value for that parameter. “-“ represents no wave for those set of
parameter value. Units for A is uM and V is um/s .

Wave Speed Wave Amplitude

Red – Baseline 
Yellow – Max
Blue - Min



Calcium Wave in Network

Wavefront in a network involves: 
1. Delays because of cell body
2. Delay because of gap junction
3. Mis-alignment between dendrites and 
overall direction of propagation.

These factors will lead to:
1. Rich spatial structure
2. Significantly reduced wave speed. 

Approximation for initial analysis of wave speed:
1. Only Considering waves  in dendrites in a network. 
2. Effects of cell bodies and gap junctions are being neglected.

Figure: 7 by 7 Network of cells 



Theoretical computation of Wavefront Speed

𝑣+,- = 𝑐 ∗ -
./0

/
0
𝑣/01 cos 𝜃 𝑑𝜃

𝑣+,- = 𝑐 ∗ 𝑣/01 ∗ -
./0

/
0
cos 𝜃 𝑑𝜃

𝑣+,- = 𝑐 ∗ 𝑣/01 ∗ 𝑠𝑖𝑛
π
2 − 𝑠𝑖𝑛 −

π
2

𝑣+,- = 𝑐 ∗ 𝑣/01 ∗ 2

𝑣+,- =
2 ∗ 𝑣/01

π

-
./0

/
0
𝑓 𝜃 𝑑𝜃 = 1

-
./0

/
0
𝑐 ∗ 𝑑𝜃 = 1

𝑐 ∗ π = 1 => 𝑐 = 2
3

Figure: Plane wave approximation. 𝜃 is the angle between direction of
wave front and perpendicular to plane wave. Dendrites are uniformly
distributed with respect to 𝜃 and can be anywhere from -90o to 90o.

𝑣"*1,2-31+ =
0∗&&.&&

/
≅ 21 67

*

𝑣$+6,2$ =
2 ∗ 416.66

π ≅ 265
𝑢𝑚
𝑠

• Effects of cell bodies and gap junctions are being neglected.



Empirical Calculation of Wavefront Speed

Network Size (m by n) Wavefront Speed (um/s )

3 by 4 16.66
5 by 5 17.34
7 by 7 14.94

10 by 9 14.78
11 by 13 14.67
13 by 15 14.12

1. Wavefront in terms of (single) farthest compartment in
each cell that experience a calcium wave peak.

2. Effects of gap junctions and cell bodies are included.

Algorithm for Wave-front Speed:

Give stimulus to network
Origin = Location at which network gets stimulus

For Cell à Network:
For Comp* à Cell:

if Comp à Wave peak:
Store distance from origin;
Store time taken by wave;

end

Choose Comp farthest from origin;
Dist = distance b/w origin & farthest comp;
Time = time taken to reach farthest comp;
Speed = Dist/ Time;

end

Avg Speed = Sum Speeds / Total number of cells

* Comp = compartment in cell

Table for wavefront speed measurement in different networks
of astrocytes. Network of size m by n, have m*n cells, arranged
on a grid of m by n. All the parameters were set to their
baseline values.



What does wave propagation look like in a network? 

• When stimulus is active or stopped 
• For different stimulus speed

Experiment:

• Stimulus is active for t seconds (where t << total simulation time)
• Stimulus acts on X-axis.
• Stimulus moving upward with some speed.



Astrocyte 2D (13 x 9 cells) Network Simulation  

Stimulus Speed: 8 um/s 16 um/s 32 um/s 



Conclusion
Astrocytes:
• Wave Speed in dendrites: 20 – 100 µm/s 1

• Waves Amplitude: 1.2 – 12 µm
• Wavefront Speed in network: 14 – 16* µm/s

Astrocytes calcium waves might be sufficient to support facilitation in smaller structures
like the medial lobula (but would require higher receptor densities).

Neurons: 
• Wave Speed in dendrites: 150 – 500 µm/s

• Wave Amplitude: 1 – 4 µm

Slow but consistent (in lower range) with physiological results 
in vertebrates.
Consistent with physiological results in vertebrates 

Too Slow for facilitation, delay because of gap junctions

Fast and consistent with physiological results in vertebrates 

Neuronal calcium waves may indeed be sufficient to support facilitation at the level of
primary lobula.

Consistent with physiological results in vertebrates 

1. NOTE: Higher wave speeds could only be achieved with extremely high receptor densities (possibly unrealistic).

* for standard parameters 



Computational Conclusion  

• Modeled 1D dendritic model (neuron & astrocyte)
• Modeled cellular (astrocyte network) models
• Large Scale simulation on clusters.
• Designed complex data structures to hold and process gigabytes of data.
• Exhaustive experimentation and Comprehensive analysis of wave behavior.



Major References
• Wiedermen (2017): A predictive focus of gain modulation encodes target trajectories in insect

vision. eLife 2017;6:e26478, DOI: 10.7554/eLife.26478

• Kang & Othmer (2009): Spatiotemporal Characteristics of Calcium Dynamics in Astrocytes.
DOI: 10.1063/1.3206698

• Sneyd & Dufour (2002): A dynamic model of the type-2 inositol triphosphate receptor.
DOI: 10.1073/pnas.032281999

• Breit & Queisser (2018): What is required for Neuronal Calcium Waves? A Numerical Parameter
Study. DOI: 10.1186/s13408-018-0064-x

• Corbino & Castillo (2020): High-order mimetic finite-difference operators satisfying the extended
Gauss divergence theorem. DOI: 10.1016/j.cam.2019.06.042

• Dunbier, Wiederman, Shoemaker, O’Carroll (2012): Facilitation of dragonfly target-detecting
neurons by slow moving features on continuous paths. DOI: 10.3389/fncir.2012.00079



Thanks.


